The above applies $\forall x,y \in \mathbb{R}$
I've tried: $x + y \ge 0$
$$x + y \ge x$$
$$ (x + y)^2 \ge 2xy$$
$$\frac{(x + y)^2}{2} \ge xy$$
But the closest I get is $\dfrac{x+y}{\sqrt{2}} \ge \sqrt{xy}$
Any ideas?
The above applies $\forall x,y \in \mathbb{R}$
I've tried: $x + y \ge 0$
$$x + y \ge x$$
$$ (x + y)^2 \ge 2xy$$
$$\frac{(x + y)^2}{2} \ge xy$$
But the closest I get is $\dfrac{x+y}{\sqrt{2}} \ge \sqrt{xy}$
Any ideas?
Note that: $$(x-y)^2\ge 0\implies x^2+y^2\ge2xy\implies x^2+2xy+y^2\ge4xy\implies(x+y)^2\ge4xy$$
$$(x-y)^2 \ge 0$$ $$x^2 - 2xy + y^2 \ge 0 $$ $$x^2 + y^2 \ge 2xy $$ $$x^2 + 2xy + y^2 \ge 4xy $$ $$(x+y)^2 \ge 4xy $$