For what values of $p$ does the following integral converge:
$\sum_{n=2}^{\infty} \frac{1}{n(\ln\ n)^p}.$
Ans. (Integral Test) $\int\limits_{n=2}^{n=\infty}\frac{1}{n(\ln n)^p} = \frac{1}{(-p+1)(ln\ n)^{p-1}}$
I know that $p \neq 1$, but I do not understand why the answer is $p > 1$