Assume $x \in \mathbb{R}$ and $(x + \frac{1}{x}) \in \mathbb{Z}$.
Use Induction to prove that for all $n \in \mathbb{N},~ (x^n + \frac{1}{x^n}) \in \mathbb{Z}$.
I'm not sure how to use the information given to prove the induction step. What I have so far is.
$P(n) : (x^n + \frac{1}{x^n}) \in \mathbb{Z}$
Base Case Then $(x^0 + \frac{1}{x^0}) = 2 \in \mathbb{Z}$
Induction Hypothesis: $x^k + \frac{1}{x^k}\in \mathbb{Z}$
Want to prove: $x^{k+1} + \frac{1}{x^{k+1}} \in \mathbb{Z}$
My first step was
$x^{k+1} + \frac{1}{x^{k+1}} = x \cdot x^k + \frac{1}{x} \cdot \frac{1}{x^k}$