METHOD I: Let $E$ denote the answer. Let $E_1$ denote the answer if you have one $6$ before you start (so you win if your first two tosses are $6$ but otherwise you need three in a row). Similarly let $E_2$ denote the answer if you have two $6's$ before you start (so you win if the first toss is a $6$ but otherwise you need three in a row). Now, starting from scratch imagine the first roll. Either you get a $6$ (probability $\frac 16$) or you don't. Thus $$E=\frac 16\,(E_1+1)+\frac 56 \,(E+1)\implies E=E_1+6$$
Similarly, we see: $$E_1=\frac 16\,(E_2+1)+\frac 56\,(E+1)$$ $$E_2=\frac 16\,(1)+\frac 56\,(E+1)=1+\frac 56\,E$$
This system is easily solved to yield the desired answer.
METHOD II: Consider the first three tosses. There are $4$ cases.
case 1. The first toss is a non-six (probability $\frac 56$). You wind up at the start after one toss.
case 2. The first toss is a six, but the second is a non-six (probability $\frac 16*\frac 56=\frac 5{36}$). You wind up back at the start after two tosses.
case 3. The first two tosses are sixes, but the third is a non-six (probability $\frac 16*\frac 16*\frac 56=\frac 5{216}$). You wind up back at the start after three tosses.
case 4. The first three tosses are sixes (probability $\frac 1{216}$). You win!
Thus we have $$E=\frac 5{6}(E+1)+\frac 5{36}(E+2)+\frac 5{216}(E+3)+\frac 1{216}(3)\implies E=258$$