Let $$I=\int\frac{dx}{x^4+1}$$
Enforce the substitution $x:=\frac{1}{y}\implies dx=-\frac{dy}{y^2}$ so that $$I=-\int\frac{dy}{y^2\left(\frac{1}{y^4}+1\right)}=-\int\frac{dy}{y^2+\frac{1}{y^2}}=-\frac{1}{2}\int\frac{1-\frac{1}{y^2}+1+\frac{1}{y^2}}{y^2+\frac{1}{y^2}}dy\tag1$$
Then observe that $$y^2+\frac{1}{y^2}=\left(y-\frac{1}{y}\right)^2+2=\left(y+\frac{1}{y}\right)^2-2\tag2$$
Now splitting $I$ at the end of $(1)$ into two integrals $$I=-\frac{1}{2}\int\frac{1-\frac{1}{y^2}+1+\frac{1}{y^2}}{y^2+\frac{1}{y^2}}dy=-\frac{1}{2}\int\frac{1-\frac{1}{y^2}}{y^2+\frac{1}{y^2}}dy-\frac{1}{2}\int\frac{1+\frac{1}{y^2}}{y^2+\frac{1}{y^2}}dy\tag3$$
Observe $$\frac{d}{dy}\left(y+\frac{1}{y}\right)=1-\frac{1}{y^2}$$ and $$\frac{d}{dy}\left(y-\frac{1}{y}\right)=1+\frac{1}{y^2}$$ The latter integrals in $(3)$ now become by combining the last identities & $(2)$:$$I=-\frac{1}{2}\int\frac{1-\frac{1}{y^2}}{\left(y+\frac{1}{y}\right)^2-2} dy-\frac{1}{2}\int\frac{1+\frac{1}{y^2}}{\left(y-\frac{1}{y}\right)^2+2} dy=-\frac{1}{2}\left(\int\frac{dt}{t^2-2}+\int\frac{du}{u^2+2}\right)$$
upon the substitutions $t=y+\frac{1}{y}$ and $u=y-\frac{1}{y}$.
$$
I=
-\frac{1}{2}\left(\int\frac{dt}{-2\left(
1-\left( \frac{t}{2} %% should be \sqrt 2 denominator
\right)^2\right)}
+\int\frac{du}{2\left(
\left(\frac{u}{\sqrt{2}}\right)^2+1\right)}
\right)
=-\frac{1}{4}\left(\int\frac{du}{\left(\frac{u}{\sqrt{2}}\right)^2+1}
-\int\frac{dt}{1-\left(\frac{t}{\sqrt{2}}\right)^2}\right)
$$
$$=-\frac{\sqrt{2}}{4}\left(\int\frac{dw}{w^2+1}-\int\frac{dz}{1-z^2}\right)=-\frac{\sqrt{2}}{\sqrt{2^4}}\left(\arctan(w)-\text{arctanh}\right(z))+C
$$
Note that $$w=\frac{u}{\sqrt{2}}=\frac{y-\frac{1}{y}}{\sqrt{2}}=\frac{\frac{1}{x}-x}{\sqrt{2}}$$ and $$z=\frac{t}{\sqrt{2}}=\frac{y+\frac{1}{y}}{\sqrt{2}}=\frac{\frac{1}{x}+x}{\sqrt{2}}$$
Thus $$I=\frac{1}{2\sqrt{2}}\left(\text{arctanh}\left(\frac{\frac{1}{x}+x}{\sqrt{2}}\right)-\text{arctan}\left(\frac{\frac{1}{x}-x}{\sqrt{2}}\right)\right)+C$$