0

I'm trying to solve this integral in terms of elementary functions but my result does not seem to match up with Sage's or WolframAlpha's.

$$\int \frac{1}{x^4+1} = \frac{x}{1+x^4}+\int \frac{4x^4}{(1+x^4)^2}$$

Where:

$$4\int \frac{x^4}{(1+x^4)^2} = 4\int \frac{u-1}{u^2} = 4\log u + \frac{4}{u}$$

So the original integral is

$$\int \frac{1}{x^4+1} = \frac{x}{1+x^4} + 4\log (1+x^4) + \frac{4}{1+x^4}$$

Where did I go wrong here? Thanks.

2 Answers2

1

Hint $$x^4+1=(x^2+1)^2-2x^2=(x^2+1-\sqrt{2}x)(x^2+1+\sqrt{2}x)$$

E.H.E
  • 23,280
1

$$I=\frac12\int\frac {\frac{2}{x^2}}{x^2+\frac {1}{x^2}} $$ $$I=\frac12\int\frac{1+\frac {1}{x^2}}{(x-\frac {1}{x})^2+2}{dx}-\frac12\int\frac{1-\frac {1}{x^2}}{(x+\frac {1}{x})^2-2}{dx}$$

Aakash Kumar
  • 3,480