Exercise:
Compute the following limit by using the central limit theorem: $$ \lim_{n\to\infty}e^{-n}\sum_{k=0}^n \frac{n^k}{k!} $$
Solution (from textbook):
Let $X_1,X_2,\ldots$ i.i.d. with $X_i\sim Pois(1)$. Then $\mu=E[X_i]=1=Var[X_i]=\sigma^2$. Further let $S_n=X_1+\ldots+X_n$, thus $S\sim Pois(n)$. With the central limit theorem we get $$ e^{-n}\sum_{k=0}^n \frac{n^k}{k!}= \sum_{k=0}^n e^{-n}\frac{n^k}{k!}= \sum_{k=0}^n Pr[S_n=k] = Pr[S_n\leq n] = Pr\left[ \frac{S_n-n\mu}{\sqrt{n}\sigma} \leq \frac{n-n\mu}{\sqrt{n}\sigma} \right]=\ldots $$ Now this is the step I don't understand: How does term on the right side of "$\leq$" disappear? $$ \ldots=Pr\left[ \frac{S_n-n\mu}{\sqrt{n}\sigma} \leq 0 \right] \stackrel{n\to\infty}{\longrightarrow} \Phi(0)=\frac{1}{2} $$ Could you explain me the step in between?