Perform a Taylor expansion of $e^x$ at $x=0$, then $$e^n=1+n+\frac{n^2}{2!}+\dots+\frac{n^n}{n!}+\int_0^{n}\frac{(n-t)^n}{n!}e^ndt,$$ we get $$(1+n+\frac{n^2}{2!}+\dots +\frac{n^n}{n!})e^{-n}=1-e^{-n}\int_0^{n}\frac{(n-t)^n}{n!}e^tdt=1-\frac{1}{n!}\int_0^nt^ne^{-t}dt.$$
Therefore, it suffices to prove that $\frac{1}{n!}\int_0^nt^ne^{-t}dt=\frac{1}{2}.$
How to get the desired outcome? I note $\int_0^{\infty}t^ne^{-t}dt=n!$... Can you give me some hints? Thanks in advance!