I thought it might be instructive to present two approaches that begin with the Feyman "trick" for differentiating under the integral. We write
$$I(a)=\int_0^1\frac{\arctan (ax)}{x\sqrt{1-x^2}}\,dx$$
Then, we differentiate with $I(a)$ to find
$$I'(a)=\int_0^1\frac{1}{(1+x^2a^2)\sqrt{1-x^2}}\,dx$$
can be evaluated by first substituting $x=\sin u$ so that
$$\begin{align}
I'(a)&=\int_0^{\pi/2}\frac{1}{1+a^2\sin^2 u}\,du\\\\
&=\frac12 \int_{-\pi/2}^{\pi/2}\frac{1}{1+a^2\sin^2 u}\,du
\end{align}$$
Next, we use the trigonometric identity $\sin^2u=\frac{1-\cos(2u)}{2}$ so that
$$\begin{align}
I'(a)&=\int_0^{\pi/2}\frac{1}{1+\frac12a^2-\frac12a^2\cos (2u)}\,du \tag 1\\\\
&=\frac14 \int_{-\pi}^{\pi}\frac{1}{1+\frac12a^2-\frac12a^2\cos (u)}\,du \tag 2
\end{align}$$
We pursue evaluation of $(1)$ using the Weirestrass Substitution and evaluation of $(2)$ using contour integration.
First, we enforce the substitution $2u=\tan(x/2)$ in $(1)$. Then, we obtain
$$\begin{align}
I'(a)&=2\int_{0}^{\infty}\frac{1}{1+4(1+a^2)x^2}\,dx\\\\
&=\frac{2}{2\sqrt{1+a^2}}\left.\arctan\left(2\sqrt{1+a^2}\,x\right)\right|_{0}^{\infty}\\\\
&=\frac{\pi}{2\sqrt{1+a^2}}
\end{align}$$
Alternatively, we let $u=e^{iz}$ in $(2)$ and write
$$\begin{align}
I'(a)&=\frac{i}{2a^2}\oint_{|z|=1}\frac{1}{z^2-\left(1+\frac{2}{a^2}\right)z+1}\,dz\\\\
&=\frac{i}{a^2}(2\pi i) \,\,\text{Res}\left(\frac{1}{z^2-2\left(1+\frac{2}{a^2}\right)z+1},z=\left(1+\frac{2}{a^2}\right)-\frac{2\sqrt{1+a^2}}{a^2}\right)\\\\
&=\pi/2\sqrt{1+a^2}
\end{align}$$
Finally, following the approach used by @Manu we find from $I'(a)$, $I(1)$ is
$$I(1)=\pi \log(1+\sqrt{2})$$
And we are done!