3

The value of series

$\sum_{n=1}^{\infty}\frac{n}{2^n}$

I try to write some terms,but of no use. Is there any general method to approach such questions.

Thanks

Dun Vatta
  • 141

4 Answers4

6

Notice that \begin{align*} \sum_{n=1}^\infty \frac{n}{2^n} &= \frac{1}{2} \sum_{n=1}^\infty \frac{n}{2^{n-1}} = \frac{1}{2} \sum_{n=0}^\infty \frac{n+1}{2^n} = \frac{1}{2} \left( \sum_{n=0}^\infty \frac{n}{2^n} + \sum_{n=0}^\infty \frac{1}{2^n} \right) \\ &= \frac{1}{2} \sum_{n=1}^\infty \frac{n}{2^n} + 1, \end{align*} thus $\left( \sum_{n=1}^\infty \frac{n}{2^n} \right) = 2$.

4

Hint

Consider $$S=\sum_{n=1}^{\infty}n x^n=x\sum_{n=1}^{\infty}n x^{n-1}=x \frac d {dx}\Big(\sum_{n=1}^{\infty} x^{n}\Big)$$

When you finish, replace $x$ by $\frac 12$.

Happy New Year

2

Hint: $$\sum_{n=0}^{\infty }x^n=\frac{1}{1-x}$$ $$\sum_{n=1}^{\infty }nx^{n-1}=(\frac{1}{1-x})'$$ $$\sum_{n=1}^{\infty }nx^{n}=x(\frac{1}{1-x})'$$ plug $x=\frac{1}{2}$

E.H.E
  • 23,280
1

prove by induction that $$\sum_{i=1}^n\frac{i}{2^i}=-2\, \left( 1/2 \right) ^{n+1} \left( n+1 \right) -2\, \left( 1/2 \right) ^{n+1}+2 $$ and then calculate the limit.