16

I know that given a group $G$ and two normal subgroups $H,K \subset G$ then it is not true that:

"if $H \cong K$ then $ \frac{G}{H} \cong \frac{G}{K} $ (the counterexample is quite easy with products of cyclic groups) "

My question is: Is the converse true?

i.e.

Given that $\frac{G}{H} \cong \frac{G}{K}$ then $H \cong K$ ?

I feel that the answer is no, but I can't think of an example.

HaroldF
  • 1,520

3 Answers3

20

Let $$G = \mathbb Z/4\mathbb Z\times\mathbb Z/2\mathbb Z$$ and consider the subgroups $$H = \mathbb Z/4\mathbb Z\times \{e\}\\K=\mathbb Z/2\mathbb Z\times\mathbb Z/2\mathbb Z$$

Then $$G/K\cong G/H\cong\mathbb Z/2\mathbb Z$$ but $H\not\cong K$.

Mathmo123
  • 23,018
6

Take, for instance, $G=\mathbb Z/4\mathbb Z \times \mathbb Z/2\mathbb Z$, $H=\mathbb Z/4 \mathbb Z \times \mathbf 0$, and $K=\mathbb Z /2\mathbb Z \times \mathbb Z/2 \mathbb Z$, so that $G/K\cong G/H \cong \mathbb Z/2 \mathbb Z$.

moonlight
  • 1,948
  • The group $K$ should be written as $2\mathbf Z/4\mathbf Z \times \mathbf Z/2\mathbf Z$ to make it naturally be a subgroup of $G$. – KCd May 05 '22 at 22:21
4

This is (also) not true. Let $G = \mathbf Z^{(\mathbf N)}$, $H = (0)$, and $K = \mathbf Z\cdot e_1$ (where $e_1 = (1, 0,\ldots)$). Then $G/K \cong G \cong G/(0)$, but $K \ne 0 = H$.

martini
  • 84,101