Let $f \in L^1(\mathbb{R})$, for $a\in \mathbb{R}$ let $f_a(x)=f(x-a)$, prove that: $$\lim_{a\rightarrow 0}\|f_a -f \|_1=0$$
I know that there exists $g\in C(\mathbb{R})$ s.t $\|f-g\|_1 \leq \epsilon$, this is also true for $f_a$ and $g_a$.
Now I have the next estimation:
\begin{align*} \|f_a-f\|_1 &= \int_{\mathbb{R}} |f(x)-f(x-a)| dx \\ &= \int |f(x)-g(x)+g(x)-g(x-a)+g(x-a)-f(x-a)| \\ &\leq \|f-g\|_1 + \|f_a-g_a\|_1 + \int |g(x)-g(x-a)| \end{align*} my question is: I can argue that $\lim_{a\to0} \int |g(x)-g(x-a)| = \lim_{a\to0} \lim_{T\to\infty} |g(x_0)-g(x_0-a)| 2T$, now I think that I can change the order of the limits here, but I am not sure why?
P.s $x_0$ is some point in $[-T,T]$, and the above is valid from the intermediate integral theorem for continuous functions, right?
Thanks.