As I said in my comment, the answer to the first part of your question is "yes". This is known as the Lebesgue differentiation theorem, see e.g. http://en.wikipedia.org/wiki/Lebesgue_differentiation_theorem.
The answer to the second part of your question is also "yes". Seen in the right way, this becomes a question about approximation by convolution (with mollifiers).
For convenience, I will give the argument specialized to the current setting. By extending $f$ on $\Bbb{R}^n \setminus \Omega$ by zero, we can assume $\Omega = \Bbb{R}^n$. We then have
\begin{eqnarray*}
\Vert f(x) - f_{x,r} \Vert_{L^1} & = & \int_{\mathbb{R}^{d}}\left|f\left(x\right)-\frac{1}{\lambda\left(B_{r}\right)}\int_{B_{r}\left(x\right)}f\left(y\right)\, dy\right|\, dx\\
& = & \int_{\mathbb{R}^{d}}\left|\frac{1}{\lambda\left(B_{r}\right)}\int_{B_{r}\left(x\right)}f\left(x\right)-f\left(y\right)\, dy\right|\, dx\\
& \leq & \int_{\mathbb{R}^{d}}\frac{1}{\lambda\left(B_{r}\right)}\int_{B_{r}\left(x\right)}\left|f\left(x\right)-f\left(y\right)\right|\, dy\, dx\\
& \overset{z=x-y}{=} & \int_{\mathbb{R}^{d}}\frac{1}{\lambda\left(B_{r}\right)}\int_{B_{r}\left(0\right)}\left|f\left(x\right)-f\left(x-z\right)\right|\, dz\, dx\\
& \overset{\text{Fubini/Tonelli}}{=} & \frac{1}{\lambda\left(B_{r}\right)}\int_{B_{r}\left(0\right)}\int_{\mathbb{R}^{d}}\left|f\left(x\right)-f\left(x-z\right)\right|\, dx\, dz\\
& = & \frac{1}{\lambda\left(B_{r}\right)}\int_{B_{r}\left(0\right)}\left\Vert f-T_{z}f\right\Vert _{L^{1}\left(\mathbb{R}^{d}\right)}\, dz\\
& \leq & \sup_{\left|z\right|<r}\left\Vert f-T_{z}f\right\Vert _{L^{1}\left(\mathbb{R}^{d}\right)}\\
& \xrightarrow[r\downarrow0]{} & 0,
\end{eqnarray*}
where the last step used that translation (of a single $L^1$ function) is continuous w.r.t. the $L^1$-norm, see e.g. proof that translation of a function converges to function in $L^1$, the argument given there for $n=1$ generalizes easily to dimensions $n>1$.