In geometry books in French, there has traditionally been a very clear distinction between 'orthogonal' lines and 'perpendicular' lines in space. Two lines are called perpendicular if they meet at a right angle. Two lines are called orthogonal if they are parallel to lines that meet at a right angle. Thus orthogonal lines could be skew (i.e., they need not meet), whereas perpendicular lines always intersect. [Edit: Evidence shows that this distinction most likely arose around the turn of the twentieth century. See below for details.]
Looking around on Quora, Answers.com and here, I have found numerous assertions that, in English, there is no difference whatsoever between 'orthogonal' and 'perpendicular.' However, given the situation in French, I have a gut feeling that the same distinction must once have been observed in English as well, but since there is now a greater focus on vectors (for which the concepts coincide) than on lines, it has gradually been lost. I would like confirmation of this, if possible.
My question, then, is as follows:
How have the two concepts referred to above as 'orthogonal' and 'perpendicular' lines historically been denoted in English and other major languages?
The best answers will include references to authoritative sources.
Edit. Zyx has provided an answer referring to Rouché and Comberousse's geometry text from 1900, where the word perpendiculaire is used for what we have called orthogonal here. This strongly suggests that, contrary to what I had assumed, even French usage has not been unchanging over time.
So Zyx may be correct in questioning my premise, and I am beginning to suspect that even in France, the use of orthogonal in the sense discussed here may have been introduced in the twentieth century. Let me give an example taken from 1952 geometry text that illustrates this usage (Géométrie dans l'espace: Classes de Première C et Moderne, 1952, Dollon and Gilet):
Deux droites sont orthogonales, si leurs angles sont droits.
Deux droites coplanaires formant quatre angles droits ont été appelées droites perpendiculaires [presumably in a lower-level book in the series]; on peut dire aussi qu'elles sont orthogonales.
Dans ce qui suit, nous réserverons en général l'expression droites orthogonales, pour deux droites non coplanaires et dont les angles sont droits.
Nearly identical conventions are found in Géométrie: Classe de Seconde C, 1964, by Hémery and Lebossé, except that they allow "orthogonal" lines to meet (thus perpendicular implies orthogonal, but not conversely):
Nous conviendrons d'appeler droites perpendiculaires deux droites à la fois concourantes et orthogonales.
However, Hadamard's Leçons de géométrie élémentaire, 1901, uses the word perpendiculaire to include both cases:
On dit que deux droites, situées ou non dans un même plan, sont perpendiculaires si leur angle, défini comme il vient d'être dit, est droit.
And Géométrie Élémentaire, 1903, by Vacquant and Macé de Lépinay agrees with Hadamard.
My conclusion is that I was much too quick in my question to call the distinction "traditional." It is most likely to have appeared in France sometime in the early to mid-twentieth century. (To pinpoint the date better, it would be best to check what was done in textbooks in the 1925-1940 period, such as those of P. Chenevier and H. Commissaire, but I don't have access to these. Vectors evidently first appeared in French school curricula in 1905. However, the scalar product was not taught systematically until 1947, so that would seem a possible time for the expression "orthogonal lines" to have been introduced.)
The examples given by Zyx show that usage in English in fact mirrors the earlier French usage, i.e. "perpendicular" is used everywhere. And I presume that the terms "skew perpendicular" and "intersecting perpendicular" would only be used where an author felt the distinction was needed. (In many cases, it will be clear from context whether two lines meet.)
Edit. The "new" French terminology dates at least from the turn of the century. Here is an excerpt from Cours de Géométrie élémentaire: à l'usage des élèves de mathématiques élémentaires, de mathématiques spéciales; des candidats aux écoles du Gouvernement et des candidats à l'Agrégation (1899) by Niewenglowski and Gérard, which was intended for both high-school and university-level students. This book is in fact referred to by Lebesgue in his Leçons sur l'intégration.
Considérons deux droites AB, CD, non situées dans un même plan; menons par un point quelconque O, des parallèles X'X et Y'Y à ces deux droites. [...]
Si les deux droites X'X et Y'Y sont perpendiculaires, nous dirons que les droites AB et CD sont orthogonales. Nous dirons aussi quelquefois qu'elles sont perpendiculaires, même si elles ne se rencontrent pas.
Thus these authors, unlike Hadamard, Rouché and Vacquant, appear to have a preference for droites orthogonales when the lines are not coplanar. However, this was not a hard-and-fast rule, and they allow that perpendiculaires can also "sometimes" be used in this case. The distinction only seems to have become settled later on.
I guess the same use of terminology as in French would be appropriate.
– Mathematician 42 Dec 10 '15 at 08:35