I have tried to show that every metric space $(X,d)$ is homeomorphic to a bounded metric space. My book gives the hint to use a metric $d'(x,y)=\mbox{min}\{1,d(x,y)\}$.
If we can show that $d(x,y) \le c_1 \cdot d'(x,y)$ with $c_1$ some positive constant and $d'(x,y) \le c_2 \cdot d(x,y)$ for $c_2$ some positive constant, then the identity map $i:(X,d) \to (X,d')$ is continuous, and also obviously a bijection, thus showing that $(X,d)$ is homeomorphic to $(X,d')$, where $(X,d')$ is bounded, thus giving the desired result.
Suppose $d(x,y)<1$. Then $d'(x,y)=d(x,y)$. If $d(x,y)\ge 1$, then $d'(x,y) \le d(x,y)$. Thus we can set $c_2 = 1$ and $d'(x,y) \le d(x,y)$ for all $x,y \in X$.
But when $d(x,y)>1$ why won't it always be the case that $c_1$ will depend on what $d(x,y)$ is?