I was reading the answers to this question, and I came across the following answer which seems intuitive, but too good to be true:
Typically, the $\frac{dy}{dx}$ notation is used to denote the derivative, which is defined as the limit we all know and love (see Arturo Magidin's answer). However, when working with differentials, one can interpret $\frac{dy}{dx}$ as a genuine ratio of two fixed quantities.
Draw a graph of some smooth function $f$ and its tangent line at $x=a$. Starting from the point $(a, f(a))$, move $dx$ units right along the tangent line (not along the graph of $f$). Let $dy$ be the corresponding change in $y$.
So, we moved $dx$ units right, $dy$ units up, and stayed on the tangent line. Therefore the slope of the tangent line is exactly $\frac{dy}{dx}$. However, the slope of the tangent at $x=a$ is also given by $f'(a)$, hence the equation $$\frac{dy}{dx} = f'(a)$$
holds when $dy$ and $dx$ are interpreted as fixed, finite changes in the two variables $x$ and $y$. In this context, we are not taking a limit on the left hand side of this equation, and $\frac{dy}{dx}$ is a genuine ratio of two fixed quantities. This is why we can then write $dy = f'(a) dx$.
By Brendan Cordy