This post says that right-hand limit, or similarly left-hand limit, is unique when it exists by the uniqueness of limit. That can be asserted because $$\lim_{x\to c} f(x) = L \Longleftrightarrow \lim_{x\to c^-} f(x) = L = \lim_{x\to c^+} f(x).$$
Now let $f : [0, \infty) \to \mathbb{R}$ be defined as $f(x) = \sqrt{x}$. This post says that $$\lim_{x\to 0} \sqrt{x} = 0 \text{ because } \lim_{x\to 0^-} \sqrt{x} = 0 = \lim_{x\to 0^+} \sqrt{x}$$ asserting that the left-hand limit exists by the vacuous truth of an empty domain, which is confirmed in this post.
But, by the vacuous truth of an empty domain, the left-hand limit is no longer unique because $$\begin{align*} &\forall z \in \mathbb{R} : \lim_{x\to 0^-} \sqrt{x} = z \\ \Longleftrightarrow\;&\forall z \in \mathbb{R} : \forall \varepsilon\in\mathbb{R}:\exists\delta\in\mathbb{R}:\forall x\in \varnothing : -\delta < x < 0 \longrightarrow \left|\sqrt{x} - z\right| < \varepsilon\;\ldots\;\text{LH limit definition} \\ \Longleftrightarrow\;&\top\;\ldots\;\text{vacuously true by }\forall x \in \varnothing\text{ for all }z \end{align*}$$
But, it must be unique because $$\lim_{x\to 0} \sqrt{x} = 0$$ is unique.
What is my logical fallacy such that I can show that the left-hand limit is no longer unique by the vacuous truth of an empty domain?