I see in this Wolfram article that Riemann integral is defined as $$\lim_{\max \Delta x_k \to 0} \;\sum_{k=1}^n f\!\left(x^*_k\right)\,\Delta x_k$$
Since $\forall k \in \mathbb{N}^+ : \Delta x_k > 0$, should not the definition uses a one-sided limit as the following one instead? $$\lim_{\max \Delta x_k \to 0^+} \;\sum_{k=1}^n f\!\left(x^*_k\right)\,\Delta x_k$$