Could anyone help me to proof this inequality: $\frac{\sqrt{a}+ \sqrt{b} }{2} \leq \sqrt{ \frac{a+b}{2} }$ for $a \geq 0$ and $b \geq 0$.
Asked
Active
Viewed 187 times
-1
-
This is the AM-QM inequality applied to $\sqrt{a}$ and $\sqrt{b}$. – Element118 Nov 24 '15 at 11:50
-
1... or the concavity of the square root function ... or ... – mickep Nov 24 '15 at 11:57
-
Possible duplicate of Arithmetic mean <= Quadratic mean, proof? – Nov 24 '15 at 23:34
2 Answers
4
Note that \begin{align*} (\sqrt{a}-\sqrt{b})^2 \ge 0 &\implies a+b \ge 2\sqrt{ab} \\ &\implies \frac{a+b}{2} \ge \sqrt{ab} \\ &\implies a+b \ge \frac{a+b}{2}+\sqrt{ab}\\ &\implies \frac{a+b}{2} \ge \frac{a+b+2\sqrt{ab}}{4} \\ &\implies \frac{a+b}{2} \ge\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^2\\ &\implies \sqrt{\frac{a+b}{2}} \ge \frac{\sqrt{a}+\sqrt{b}}{2} \end{align*}

OrangeApple3
- 734
1
$\left( \frac{\sqrt{a}+ \sqrt{b} }{2} \right) ^{2} \leq \left( \sqrt{ \frac{a+b}{2} }\right) ^{2}$ $ \Longleftrightarrow \left( \sqrt{a}-\sqrt{b}\right)^{2} \geqslant 0 $

naser
- 142
-
What we need here is a $\Leftarrow$ or $\Leftrightarrow$, not a $\Rightarrow$. – Wojowu Nov 24 '15 at 13:07