Problem:
If $(k,l) = 1$, show that $(b_2k-b_1l, a_1l-a_2k) = 1$ for $a_1b_2-a_2b_1=1$
Note: ($a_1, a_2,b_1,b_2,k,l \in \mathbb{Z}$)
Also note that the actual (bigger) problem is:
If $m = a_1x+b_1y$ (Eq1) and $n=a_2x+b_2y$ (Eq2) and $a_1b_2-a_2b_1=1$, prove that $(m,n)=(x,y)$.
I have proved that $(m,n) = d | x \text{ and } d|y$ I am left to prove that $d = (x,y)$, that's why I asked above question.
I had made $m = dk$ and $n = dl$ ($\therefore (k,l)=1$) and after substitution in Eq1 and Eq2 for $x$ and $y$ values I got $d(b_2k-b_1l)=x$ and $d(a_1l-a_2k) = y$. If I can show $(b_2k-b_1l, a_1l-a_2k) = 1$ then definitely $d = (x,y)$
Method:
Suppose $(b_2k-b_1l, a_1l-a_2k) = d > 1$. Then, $d | b_2k, d | b_1l, d|a_1l,d|a_2k$ must be true.
This implies $d|a_2b_1kl$ and $d|a_1b_2kl$ must be true. Let, $dp = a_2b_1kl \implies a_2b_1 = \frac{dp}{kl}$ and $dq=a_1b_2kl\implies a_1b_2 = \frac{dq}{kl}$
So, $$a_1b_2-a_2b_1=1 \implies \frac{d(q-p)}{kl}=1 \implies kl =d(q-p)$$
I am stuck here. How to prove a contradiction so that $d = 1$?