Let $n\in \mathbb{N}^*$.
$\bullet$ If $n=2k+1$, where $k \in \mathbb{N}$.
We set $I_n=\sum_{j=0}^{k}\frac{(-1)^j\binom{k}{j}}{k+j+1}$. $k+1,...,2k+1$ are divisors of $\text{lcm}\left( 1,...,n \right)$, so $\text{lcm}\left( 1,...,n \right)I_n \in \mathbb{Z}$. We have $$I_n=\sum_{j=0}^{k}(-1)^j\binom{n}{k}\int_{0}^{1}t^{k+j}dt=\int_{0}^{1}t^k(1-t)^kdt$$
On the othere hand, $I_n>0$, hence $\text{lcm}\left( 1,...,n \right)I_n \ge 1$. Moreover $\sup_{0\le t\le1}t^k(1-t)^k=\frac{1}{2^{2k}}$ so $\text{lcm}\left( 1,...,n \right)\ge \frac{1}{I_n}\ge 2^{2k}=2^{n-1}$.
$\bullet$ If $n=2k$, where $k \in \mathbb{N}^*$.
We set $J_n=\sum_{j=0}^{k}\frac{(-1)^j\binom{k}{j}}{k+j}$. $k,...,2k$ are divisors of $\text{lcm}\left( 1,...,n \right)$, so $\text{lcm}\left( 1,...,n \right)J_n \in \mathbb{Z}$. We have $$J_n=\sum_{j=0}^{k}(-1)^j\binom{k}{j}\int_{0}^{1}t^{k-1+j}dt=\int_{0}^{1}t^{k-1}(1-t)^kdt$$
On the othere hand , $J_n>0$, hence $\text{lcm}\left( 1,...,n \right)J_n \ge 1$. Moreover $\sup_{0\le t\le1}t^{k-1}(1-t)^k=\left( \frac{k-1}{2k-1} \right)^{k-1}\left( \frac{k-2}{2k-1} \right)^{k}\le \frac{1}{2^{2k-1}}$ so $\text{lcm}\left( 1,...,n \right)\ge \frac{1}{J_n}\ge 2^{2k-1}=2^{n-1}$.