Consider $\mathcal{T}=S^{1}\times D^{2}$, where $S^{1}=[0,1]\mod 1$ and $D^{2}=\{(x,y)\in\mathbb{R}^{2}|x^{2}+y^{2}\le 1\}$. Fix $\lambda\in(0,\frac{1}{2})$ and define the map $F:\mathcal{T}\to\mathcal{T}$ by $$F(\phi,x,y)=\left(2\phi,\lambda x+\frac{1}{2}\cos 2\pi\phi,\lambda y+\frac{1}{2}\sin 2\pi\phi\right)$$
Then define the Lyapunov exponent $\chi(x,v)$ by $$\chi(x,v)=\overline{\lim_{n\to\infty}}\frac{1}{n}\log\|df^{n}(x)v\|$$.
So I wrtie $$\chi(\phi,x,y,v)=\overline{\lim_{n\to\infty}}\frac{1}{n}\log\|dF^{n}(\phi,x,y)v\|$$
The problem is that I calculate $\frac{\partial}{\partial y\partial x\partial\phi}F(\phi,x,y)=0$. I think that's the wrong way of going about it anyway.
I also have that $F^{n}(\mathcal{T})\cap\{\phi=constant\}$ consists of $2^{n}$ disks of radius $\lambda^{n}$, but I need help with calculating $dF^{n}(\mathcal{T})$.