$I = (0,1) = {x \in \mathbb{R} : 0 < x < 1}$
$\mathbb{N} \nsim I \iff \mathbb{N} \nsim \mathbb{R}$
Forward
$\mathbb{N} \nsim I \Rightarrow \mathbb{N} \nsim \mathbb{R}$
Union of countable sets is countable:
$\mathbb{N} \sim A$ and $\mathbb{N} \sim B \Rightarrow \mathbb{N} \sim A \cup B$
I can negate this statement in the following way
(1) $\mathbb{N} \nsim A \Rightarrow \mathbb{N} \nsim A \cup B$
I can pick $x_1, x_2 \in A$ such that either $\nexists f : A \to A' : x_1 \ne x_2, f(x_1) \ne f(x_2)$ , or $\exists y \in A' : y \ne f (x) $. It makes no difference if $(x_1, x_2) \in A$ breaks 1:1 or onto property of $f$, either way, $f(x_1), f(x_2) \in A \cup B$.
(1) is valid regardless if $\mathbb{N} \sim B$ or $\mathbb{N} \nsim B$, because such two $x_1, x_2 \in A$ break the countability of $A \cup B$.
Hence $\mathbb{N} \nsim A \Rightarrow \mathbb{N} \nsim A \cup B$. If I now use
$I^c = \{x \in \mathbb{R} : x \notin I\}$
then $I^c \cup I = \mathbb{R}$ and
$\mathbb{N} \nsim I \Rightarrow \mathbb{N} \nsim I \cup I^c \equiv \mathbb{N} \nsim \mathbb{R}$
Backward
$\mathbb{N} \nsim \mathbb{R} \Rightarrow \mathbb{N} \nsim I$
Subset of a countable set is countable,
$\mathbb{N} \sim A$ and $B \subseteq A \Rightarrow \mathbb{N} \sim B$
negation of this statement
$\mathbb{N} \nsim A$ and $B \subseteq A \Rightarrow \mathbb{N} \nsim B$
gives
$\mathbb{N} \nsim \mathbb{R}$ and $I \subset \mathbb{R} \Rightarrow \mathbb{N} \nsim I$
My question: Is this proof correct?
Edit: I'm reading about real analsis from Abbot's "Understanding Analysis". This is how countability is defined there:
Definition 1.4.7. Two sets A and B have the same cardinality if there exists f : A → B that is 1–1 and onto. In this case, we write A ∼ B.
Definition 1.4.10. A set A is countable if N ∼ A. An infinite set that is not countable is called an uncountable set.