So this is a homework problem. So I'll give what I got.
Suppose $A,$ $\ B$ & $X$ are $n$ by $n$ matrices with $A,$ $\ X$ & $A-AX$ invertible. Now suppose that $$(1) \quad (A-AX)^{-1}=X^{-1}B$$
$A)$ Explain why $B$ is invertible.
$B)$ Solve for $X$.
Part A:
Multiply both sides of $(1)$ by $B^{-1}$ to get,
$$(2) \quad (A-AX)^{-1}B^{-1}=X^{-1}$$ Now Multiply $(2)$ by $(A-AX)^{-1}$ to get,
$$(3) \quad B^{-1}=(A-AX)X^{-1}$$
$(A-AX)$ exists, and the existence of $X^{-1}$ is a given. The matrices are of the same size so matrix multiplication is defined. Therefore $B^{-1}$ exists.
Part B
From $(3)$ use the fact that,
$C^{-1}D^{-1}=(DC)^{-1}$
To manipulate the RHS of $(3)$ into,
$$(4) \quad B^{-1}=(X(A-AX)^{-1})^{-1}$$ $$\Rightarrow B^{-1}=(X(A(I-X))^{-1})^{-1}$$ $$\Rightarrow B^{-1}=(X(I-X)^{-1}(A)^{-1})^{-1}$$ $$\Rightarrow B^{-1}=(((I-X)X^{-1})^{-1}A^{-1})^{-1}$$ $$\Rightarrow B^{-1}=A(I-X)X^{-1}$$ $$\Rightarrow B^{-1}=A(X^{-1}-I)$$ $$\Rightarrow A^{-1}B^{-1}=(X^{-1}-I)$$ $$\Rightarrow X=(BA)^{-1}+I$$
Seems correct to me. But I'm a bit bias. Is this correct? If not, where's the error?