A Problem : \begin{equation}\lim_{x\to 0} \frac{\sin x}{x}\end{equation} results in the solution : $1$
But the same function enclosed in a greatest integer function results in a $0$
\begin{equation}\lim_{x\to 0} \left\lfloor{\frac{\sin x }{x}}\right\rfloor\end{equation}
Why?
My thoughts:
[The value of the first function tends to 1 because of the expansion :
$$\frac{\sin\left( x \right)}{x}\approx\frac{ x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots}{x}$$ $$\approx 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots$$ and putting zero in the function results in 1
but applying the greatest integer function to the same will result in a zero as whenever the value of the result is taken it will be slightly less than one because of all the subtractions involved in the expansion.]