6

Find the sum of:

i)$\displaystyle\sum_{k=0}^{n} k^2$ $\left(\begin{array}{c} n\\k\end{array}\right)$

ii) $\displaystyle\sum_{k=1}^{n} \frac{2k+5}{k+1}$$\left(\begin{array}{c} n\\k\end{array}\right)$


Thoughts:

i)(After the Edit)$\displaystyle\sum_{k=0}^{n} k^2$ $\left(\begin{array}{c} n\\k\end{array}\right)$ = $\displaystyle\sum_{k=0}^{n} {k(k-1)}$ $\left(\begin{array}{c} n\\k\end{array}\right)$ + $\displaystyle\sum_{k=0}^{n}{k}$ $\left(\begin{array}{c} n\\k\end{array}\right)$= $\displaystyle\sum_{k=0}^{n} {n(k-1)}$ $\left(\begin{array}{c} n-1\\k-1\end{array}\right)$ + $\displaystyle\sum_{k=0}^{n}{n}$ $\left(\begin{array}{c} n-1\\k-1\end{array}\right)$= $\displaystyle\sum_{k=0}^{n} {n(n-1)}$ $\left(\begin{array}{c} n-2\\k-2\end{array}\right)$ + n$\displaystyle\sum_{k=0}^{n}$ $\left(\begin{array}{c} n-1\\k-1\end{array}\right)$= $n(n-1)2^{n-2}+n2^{n-1}$=$n2^{n-2}(2+n-1)$=$n(n+1)2^{n-2}$

ii)(After the Edit)$\displaystyle\sum_{k=1}^{n} \frac{2k+5}{k+1}$$\left(\begin{array}{c} n\\k\end{array}\right)$= $\displaystyle\sum_{k=1}^{n} \frac{(2k+2)+3}{k+1}$$\left(\begin{array}{c} n\\k\end{array}\right)$= 2$\displaystyle\sum_{k=1}^{n}$$\left(\begin{array}{c} n\\k\end{array}\right)$ + 3$\displaystyle\sum_{k=1}^{n} \frac{1}{k+1}$$\left(\begin{array}{c} n\\k\end{array}\right)$=

$2^{n+1}-2$+ $\frac{3}{n+1}$$\displaystyle\sum_{k=1}^{n} \frac{n+1}{k+1}$$\left(\begin{array}{c} n\\k\end{array}\right)$= $2^{n+1}-2$+ $\frac{3}{n+1}$$\displaystyle\sum_{k=1}^{n}$$\left(\begin{array}{c} n+1\\k+1\end{array}\right)$= $2^{n+1}-2+\frac{3}{n+1}(2^{n+1}-1)$

  • 2
    Hint on the first one: $\sum_{k=0}^n k^2 {n \choose k}=\sum_{k=0}^n k(k-1) {n \choose k} + \sum_{k=0}^n k {n \choose k}$. This trick ensures that you always have the right term in the denominator available to cancel with. This trick is usually the way you want to approach these types of problems (in particular I imagine some variant of it will help in your other problems). – Ian Sep 09 '15 at 15:22
  • 3
    Also, +1 for well-organized attempts that are actually on the right track. – Ian Sep 09 '15 at 15:23
  • Hello Ian. Can you see my solution,I think is correct? – Marko Polo Sep 09 '15 at 16:18
  • 1
    You can find something about the first identity in this question and other posts linked there. – Martin Sleziak Sep 10 '15 at 12:11

2 Answers2

5

Hint:

ii) We can expand as follows \begin{align*} \sum_{k=1}^n\frac{2k+5}{k+1}{n\choose k}&=\sum_{k=1}^n\frac{(2k+2)+3}{k+1}{n\choose k}\\[4pt] &=\sum_{k=1}^n 2{n\choose k}+\frac{3}{n+1}\sum_{k=1}^n\frac{n+1}{k+1}{n\choose k}\\[4pt] &=2\sum_{k=1}^n{n\choose k}+\frac{3}{n+1}\sum_{k=1}^n{{n+1}\choose {k+1}} \end{align*}


Notice $$\sum_{k=0}^n{n\choose k}=2^n\qquad\implies\qquad\sum_{k=1}^n{n\choose k}=2^n-1,$$ then, \begin{align*} \sum_{k=1}^n\frac{2k+5}{k+1}{n\choose k}&=2\sum_{k=1}^n{n\choose k}+\frac{3}{n+1}\sum_{k=1}^n{{n+1}\choose {k+1}}=2(2^n-1)+\frac{3}{n+1}(2^{n+1}-1) \end{align*} Which can be reduced as $$\sum_{k=1}^n\frac{2k+5}{k+1}{n\choose k}=\frac{2^{n+1}(n+4)-2n-5}{n+1}$$

2

For the first one:

We know that:

$$ \sum_{k=0}^{n}{{n\choose k}x^k}={(1+x)}^{n} $$

So let's differentiate it to get:

$$ \sum_{k=0}^{n}{k{n\choose k}{x}^{k-1}}=n{(1+x)}^{n-1} $$

Multiply by $x$ and differntiate again:

$$ \sum_{k=0}^{n}{k^2{n\choose k}{x}^{k-1}}=(nx{(1+x)}^{n-1})'\\ \sum_{k=0}^{n}{k^2{n\choose k}{x}^{k-1}}=n({(1+x)}^{n-1}+(n-1)x{(1+x)}^{n-2})\\ $$

Multiply by $x$ one more time to get:

$$ \sum_{k=0}^{n}{k^2{n\choose k}{x}^{k}}=nx({(1+x)}^{n-1}+(n-1)x{(1+x)}^{n-2})\\ $$ Now just put $x=1$ and you'll get the answer.

Let's move on to the next one:

$$ \sum_{k=0}^{n}{\frac{2k+5}{k+1}{n\choose k}x^k} =2\sum_{k=0}^{n}{\frac{k}{k+1}{n\choose k}x^k}+5\sum_{k=0}^{n}{\frac{1}{k+1}{n\choose k}x^k}\\ =2\sum_{k=0}^{n}{(1-\frac{1}{k+1}){n\choose k}x^k}+5\sum_{k=0}^{n}{\frac{1}{k+1}{n\choose k}x^k}\\ =2\sum_{k=0}^{n}{{n\choose k}x^k}-2\sum_{k=0}^{n}{\frac{1}{k+1}{n\choose k}x^k}+5\sum_{k=0}^{n}{\frac{1}{k+1}{n\choose k}x^k}\\ =2{(1+x)}^{n}-2\sum_{k=0}^{n}{\frac{1}{k+1}{n\choose k}x^k}+5\sum_{k=0}^{n}{\frac{1}{k+1}{n\choose k}x^k} $$

Now let's compute :

$$ \sum_{k=0}^{n}{\frac{1}{k+1}{n\choose k}x^k} $$

We have:

$$ \sum_{k=0}^{n}{{n\choose k}x^k} = {(1+x)}^{n} $$

Let's integrate to get:

$$ \sum_{k=0}^{n}{\frac{1}{k+1}{n\choose k}{x}^{k+1}}=\frac{{(1+x)}^{n+1}}{n+1}+C $$

For $x=0$ the sum is $0$ so :

$$ C=-\frac{1}{n+1} $$

We finally get:

$$ \sum_{k=0}^{n}{\frac{1}{k+1}{n\choose k}x^k}=\frac{1}{x}(\frac{{(1+x)}^{n+1}}{n+1}-\frac{1}{n+1}) $$

$$ \sum_{k=0}^{n}{\frac{2k+5}{k+1}{n\choose k}x^k} = 2{(1+x)}^{n}-2(\frac{1}{x}(\frac{{(1+x)}^{n+1}}{n+1}-\frac{1}{n+1}))+5(\frac{1}{x}(\frac{{(1+x)}^{n+1}}{n+1}-\frac{1}{n+1})) $$ Now plug in $x=1$ and you'll get the answer