How can I find closed form formula for this summation:
$\sum_{k=0}^n k^2 \binom{n}{k} 3^{2k}$
How can I find closed form formula for this summation:
$\sum_{k=0}^n k^2 \binom{n}{k} 3^{2k}$
$$(1+x)^n=\sum_{k=0}^n\binom nk x^k\implies n(1+x)^{n-1}=\sum_{k=1}\binom nkk\,x^{k-1}\implies$$
$$\implies n(n-1)(1+x)^{n-2}=\sum_{k=2}^n\binom nk k(k-1)x^{k-2}=\sum_{k=2}^n\binom nk k^2x^{k-2}-\sum_{k=2}^n\binom nk k\,x^{k-2}=$$