My question has two parts:
How can I nicely define the infinite sequence $0.9,\ 0.99,\ 0.999,\ \dots$? One option would be the recursive definition below; is there a nicer way to do this? Maybe put it in a form that makes the second question easier to answer. $$s_{i+1} = s_i + 9\cdot10^{-i-2},\ s_0 = 0.9$$ Edit: Suggested by Kirthi Raman: $$(s_i)_{i\ge1} = 1 - 10^{-i}$$
Once I have the sequence, what would be the limit of the infinite product below? I find the question interesting since $0.999... = 1$, so the product should converge (I think), but to what? What is the "last number" before $1$ (I know there is no such thing) that would contribute to the product? $$\prod_{i=1}^{\infty} s_i$$