For the infinite product
$$P=\frac{\prod_{i=0}^\infty (2^i-1) } {\prod_{i=0}^\infty 2^i }=\frac{315}{1024}\frac{\prod_{i=5}^\infty (2^i-1) } {\prod_{i=5}^\infty 2^i }$$
$$A=\log \left(\frac{\prod_{i=5}^\infty (2^i-1) } {\prod_{i=5}^\infty 2^i } \right)=\sum_{i=5}^\infty\log \left(1-\frac1 {2^i}\right)=-\sum_{i=5}^\infty \Big[\frac1 {2^i}+ \frac1 {2^{2i}}+\frac1 {2^{3i}}+\cdots\Big]$$ and we face geometric progressions. So, summing up to infinty, we have
$$A=-\Big[\frac{1}{16}+\frac{1}{768} +\frac{1}{28672}+\frac{1}{983040}+\frac{1}{32505856}+\frac{1}{1056964608}+\cdots\Big]$$ Using only these numbers
$$A \sim -\frac{10458550091}{163829514240}$$ Now using the approximation
$$e^A=\frac{1+\frac{A}{2}+\frac{A^2}{12}}{1-\frac{A}{2}+\frac{A^2}{12}}=\frac{311910183016998882664441}{332471213189757736214521}$$
$$P=\frac{98251707650354648039298915}{340450522306311921883669504}$$ which, converted to decimals is
$P=0.28859$ while the "exact" value is $P=0.28879$