Find the range of the function,$f(x)=\int_{-1}^{1}\frac{\sin x}{1-2t\cos x+t^2}dt$
I tried to solve it,i got range $\frac{\pi}{2}$ but the answer is ${\frac{-\pi}{2},\frac{\pi}{2}}$
$f(x)=\int_{-1}^{1}\frac{\sin x}{1-2t\cos x+t^2}dt=\int_{-1}^{1}\frac{\sin x}{(t-\cos x)^2+\sin^2x}dt=\sin x\int_{-1}^{1}\frac{1}{(t-\cos x)^2+\sin^2x}dt$
$=\frac{\sin x}{\sin x}\left[\tan^{-1}\frac{t-\cos x}{\sin x}\right]_{-1}^{1}=\tan^{-1}\frac{1-\cos x}{\sin x}+\tan^{-1}\frac{1+\cos x}{\sin x}$
$=\tan^{-1}\tan\frac{x}{2}+\tan^{-1}\cot\frac{x}{2}=\frac{\pi}{2}$
But i am not getting $\frac{-\pi}{2}$.Have i done some wrong?Please enlighten me.