For linear operators $A_n$, $A$ in a finite dimensional vector space $V$, I am trying to prove the equivalence of
- $\|A_n - A\| = \sup_{x \in \mathbb{C}^n, |x| = 1} |A_nx-Ax| \to 0$ as $n \to \infty$ (Uniform Convergence; henceforth UC)
- $\forall x\in V: $ $|A_n x - Ax| \to 0$ as $n \to \infty$ (Strong Convergence; henceforth SC)
- $\forall x, y \in V: |\langle A_n x, y \rangle - \langle Ax, y \rangle | \to 0$ as $n \to \infty$ (Weak Convergence; henceforth WC)
I can show
- $(UC) \implies (SC)$: Let $x \in V$. Then $ x = \lambda y$ for $\lambda \in \mathbb{F}$ and $y \in V$ s.t. $|y| = 1$. Thus \begin{eqnarray*} |A_n x - Ax| = \lambda|A_n y - Ay|\leq \lambda\|A_n - A\| \to 0. \end{eqnarray*}
- $(SC) \implies (WC)$: by Cauchy-Schwarz, \begin{eqnarray*} |\langle A_n x, y \rangle - \langle Ax, y\rangle| = |\langle (A_n-A) x, y \rangle | \leq \langle (A_n-A)x, (A_n-A)x \rangle \langle y, y \rangle = |A_n x - Ax| \cdot |y| \to 0. \end{eqnarray*}
To establish equivalence, I also need $(WC) \implies (UC)$, but right now I have no clue how to show this. In particular, I assume I need to use finite-dimensionality somehow, but am not sure how.