$$\dfrac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} < \dfrac{1}{\sqrt{3n+1}}.$$
However I've non-inductive proof of $\dfrac{1 \cdot 3 \cdot 5 \cdots(2n-1)}{2 \cdot 4 \cdot 6 \cdots(2n)} < \dfrac{1}{\sqrt{2n+1}}$, but I can't prove it for $3n+1$. It is obvious is to see $\dfrac{1 \cdot 3 \cdot 5 \cdots(2n-1)}{2 \cdot 4 \cdot 6 \cdots(2n)} < \dfrac{1}{\sqrt{3n+1}}$ is stronger inequality.
Let $S=\dfrac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} < \dfrac{2 \cdot 4 \cdot 6 \cdots(2n)}{3 \cdot 5 \cdot 7 \cdots(2n+1)}$ [$\frac{1}{2}<\frac{2}{3} $ and so on.]
So, $S<\dfrac{1}{S(2n+1)}$ Implies, $S<\dfrac{1}{\sqrt{2n+1}}$