Let $K=\{0\}\cup\left\{\frac1n:n\in\Bbb Z^+\right\}$ with the topology that it inherits from $\Bbb R$, let $\Bbb N$ have the discrete topology, and let $X=\Bbb N\times K$ with the product topology. Let
$$A=\{\langle n,y\rangle\in X:n\text{ is odd}\}\;;$$
$A$ is countably infinite, so let $\varphi:\Bbb N\times\{1\}\to A$ be any bijection. Then
$$f:X\to X:\langle n,y\rangle\mapsto\begin{cases}
\langle 2n,y\rangle,&\text{if }y=0\\
\left\langle 2n,\frac1{k-1}\right\rangle,&\text{if }y=\frac1k<1\\
\varphi(\langle n,1\rangle),&\text{if }y=1
\end{cases}$$
is a continuous bijection that is not open: $f$ maps the isolated point $\varphi^{-1}(\langle 0,0\rangle)$ to the non-isolated point $\langle 0,0\rangle$.
This is simpler than it may at first appear. Pictorially, $X$ is just the disjoint union of countably infinitely many simple sequences:
$$\begin{array}{c|cc}
0&\color{brown}\bullet&\color{brown}\bullet&\color{brown}\bullet&\color{brown}\bullet&\ldots\\
\uparrow&\uparrow&\uparrow&\uparrow&\uparrow&\cdots\\
\frac14&\bullet&\bullet&\bullet&\bullet&\cdots\\
\frac13&\bullet&\bullet&\bullet&\bullet&\cdots\\
\frac12&\bullet&\bullet&\bullet&\bullet&\cdots\\
1&\bullet&\bullet&\bullet&\bullet&\cdots\\ \hline
&0&1&2&3&\cdots
\end{array}$$
$A$ consists of the odd-numbered columns. The map $f$ takes all of column $n$ except the bottom point to column $2n$, moving the isolated (black) points down one but leaving the limit (brown) points at the top; the (blue) point at the bottom of column $1$ goes somewhere in $A$.
$$\begin{array}{c|cc}
0&\color{brown}\bullet&\rightarrow&\color{brown}\bullet\\
&\uparrow&&\uparrow&\\
\frac14&\bullet&&\bullet\\
&&\searrow\\
\frac13&\bullet&&\bullet\\
&&\searrow\\
\frac12&\bullet&&\bullet\\
&&\searrow\\
1&\color{blue}\bullet&&\bullet\\ \hline
&1&&2
\end{array}$$
This maps all of $X$ except the bottom row bijectively (and homeomorphically) onto $X\setminus A$, the even columns. The points in the bottom row are isolated, so a continuous map can send them anywhere; $\varphi$ (and hence $f$) simply sends them bijectively to $A$.