43

I have seen the bounds $\left(\frac{n}{k}\right)^k \leq {n \choose k} \leq \left( \frac{en}{k}\right)^k$ for integers $n \geq k >0$ for the binomial coefficient. I can prove the upper bound in this inequality, but I'm missing some detail for the lower bound. Does anyone know some simple way to prove this lower bound?


For completion let me put the proof for the upper bound. We know that $${n \choose k} = \frac{n!}{(n-k)! k!} = \frac{n \cdot (n-1) \dots (n-(k-1))}{k!} \leq \frac{n^k}{k!} - (1)$$ Now let us look at the expansion of $$e^k=\sum_{i=0}^{\infty}\frac{k^i}{i!}$$ Now if we just pick the term wrt $k$, we get $e^k > \frac{k^k}{k!}$. Which implies $\frac{1}{k!}< \left(\frac{e}{k}\right)^k$ Now substituting in equation $(1)$, we get the bound.

miracle173
  • 11,049
user1105
  • 531
  • 33
    For completion let me put the proof for the upper bound. We know that ${n \choose k} = \frac{n!}{(n-k)! k!} = \frac{n \cdot (n-1) \dots (n-(k-1))}{k!} \leq \frac{n^k}{k!} - (1)$

    Now let us look at the expansion of $e^k=\sum_{i=0}^{\infty}\frac{k^i}{i!}$. Now if we just pick the term wrt $k$, we get $e^k > \frac{k^k}{k!}$. Which implies $\frac{1}{k!}< \left(\frac{e}{k}\right)^k$.

    Now substituting in equation (1), we get the bound.

    – user1105 Jul 07 '15 at 10:42

2 Answers2

43

First, we see that for $k=1$ we have a trivial statement $$\left( \frac{n}{k} \right)^k = n \leq n = \binom{n}{k}.$$

Now, consider $k > 1$ and let $0 < m < k \leq n$. Then

$$k \leq n \Rightarrow \frac{m}{n} \leq \frac{m}{k} \Rightarrow 1 - \frac{m}{k} \leq 1- \frac{m}{n} \Rightarrow \frac{k-m}{k} \leq \frac{n-m}{n} \Rightarrow \frac{n}{k} \leq \frac{n-m}{k-m}$$ Hence, $$\left( \frac{n}{k} \right)^k = \frac{n}{k} \cdot \ldots \cdot \frac{n}{k} \leq \frac{n}{k} \cdot \frac{n-1}{k-1} \cdot \ldots \cdot \frac{n-k+1}{1} = \binom{n}{k}.$$

j4GGy
  • 3,721
1

Here's another way:

Take the log of both sides:

$$k(\log n - \log k) \stackrel{show}{\leq} \sum_{i=1}^k \log (n-k+i) - \log i$$

But the expression in the summation on the RHS is decreasing in $i$, so it is at least $k$ times the minimum value over $i\leq k$: $k (\log n - \log k)$ which is just the LHS.

dmh
  • 2,958