Let
- $(\Omega,\mathcal A,\operatorname P)$ be a probability space
- $X$ and $Y$ be random variables on $(\Omega,\mathcal A,\operatorname P)$ with values in $\mathbb{R}^m$ and $\mathbb{R}^n$, respectively
- $\varphi_Z$ denote the characteristic function of a random variable $Z$
Claim: $\;$ $X$ and $Y$ are independent iff $$\varphi_{(X,Y)}(s,t)=\varphi_X(s)\varphi_Y(t)\;\;\;\text{for all }s\in\mathbb{R}^m\;\text{and}\;t\in\mathbb{R}^n\tag{1}$$
Proof: $\;$ "$\Rightarrow$":
- Let $Z:=(X,Y)$ and $u:=(s,t)\in\mathbb{R}^m\times\mathbb{R}^n$
- $X$ and $Y$ are independent $\Rightarrow$ $e^{i\langle s,\;\cdot\;\rangle}\circ X$ and $e^{i\langle t,\;\cdot\;\rangle}\circ Y$ are independent $\Rightarrow $
\begin{equation} \begin{split} \varphi_Z(u)&\stackrel{\text{def}}{=}\operatorname E\left[e^{i\langle u,Z\rangle}\right]\\ &=\operatorname E\left[e^{i\langle s,X\rangle+i\langle t,Y\rangle}\right]\\ &=\operatorname E\left[e^{i\langle s,X\rangle}e^{i\langle t,Y\rangle}\right]\\ &=\operatorname E\left[e^{i\langle s,X\rangle}\right]\operatorname E\left[e^{i\langle t,Y\rangle}\right]\\ &\stackrel{\text{def}}{=}\varphi_X(s)\varphi_Y(t) \end{split} \end{equation}
"$\Leftarrow$":
- Let $\tilde X\sim X$ and $\tilde Y\sim Y$ be independent
- Since a finite measure on $\mathbb{R}^d$ is uniquely determined by its characteristic function, $$\varphi_X=\varphi_{\tilde X}\;\;\;\text{and}\;\;\;\varphi_Y=\varphi_{\tilde Y}\tag{2}$$
- Thus, \begin{equation} \begin{split} \varphi_{(X,Y)}(s,t)&\stackrel{(1)}{=}\varphi_X(s)\varphi_Y(t)\\ &\stackrel{(2)}{=}\varphi_{\tilde X}(s)\varphi_{\tilde Y}(t)\\ &=\varphi_{(\tilde X,\tilde Y)}(s,t) \end{split} \end{equation} by "$\Rightarrow$"
- Again, since the distribution of $(X,Y)$ is uniquely determined by $\varphi_{(X,Y)}$, we've got $$(X,Y)\sim (\tilde X,\tilde Y)$$
- Especially, $Z:=(X,Y)$ and $\tilde Z:=(\tilde X,\tilde Y)$ have the same distribution function $F$
Now, I got stuck. From the definition of $F$ and the definition of independence, it seems to be obvious, that we can conclude the independence of $X$ and $Y$. However, how do we need to argue in detail?