Let $B=(B_t)_{t\ge 0}$ be a Brownian motion on a probability space $(\Omega,\mathcal A,\operatorname{P})$, i.e. $B$ is a real-valued stochastic process with
- $B_0=0$ almost surely
- $B$ has independent and stationary increments
- $B_t\sim\mathcal{N}_{0,\;t}$
- $B$ is almost surely continuous
Let $\mathbb F=(\mathcal F_t)_{t\ge 0}$ be the filtration generated by $B$ and $$\mathcal F_t^+:=\bigcap_{s>t}\mathcal F_s\;\;\;\text{for all }t\ge 0\;.$$
**Claim:**$\;$ Let $t>0$ and $$B':=(B_{s+t}-B_t)_{s\ge 0}\;.$$ Then $B'$ is independent of $\mathcal F^+_t$.
Proof: $\;$ Since $B$ is almost surely right-continuous $$B_{s+t_n}-B_{t_n}\stackrel{n\to\infty}{\to}B'_s\;\;\;\text{almost surely}\tag{1}$$ for all $t_n\downarrow t$ and $s\ge 0$. And further, observing that $B'$ is a Brownian motion independent of $\mathcal F_t$, we see that $$\left(B_{s_1}',\ldots,B_{s_m}'\right)\stackrel{(1)}{=}\lim_{n\to\infty}\underbrace{\left(B_{s_1+t_n}-B_{t_n},\ldots,B_{s_m+t_n}-B_{t_n}\right)}_{=:X_n}\;\;\;\text{almost surely}\tag{2}$$ for all $s_1,\ldots,s_m\ge 0$. Again, it's easy to verify, that $$X_n\text{ is independent of }\mathcal F_{t_n}\supseteq\mathcal F_t\;\;\;\text{for all }n\in\mathbb{N}\;.$$ So, we're really close, but I don't find the right argument to conclude the independence of $\left(B_{s_1}',\ldots,B_{s_m}'\right)$ and $$\mathcal F_t^+=\bigcap_{n\in\mathbb{N}}\mathcal F_{t_n}\;.$$ So, how do I need to argue?