If $X,Y,Z$ are independent then:
$$\mathbb{P}[X \in A, Y \in B Z \in C] =\mathbb{P}[X \in A] \mathbb{P}[Y \in B] \mathbb{P}[Z \in C] $$
consider now
$s^1(x) = \sum_{i =1}^{k_1} 1_{A_i}(x) \alpha_i$
$s^2(y) = \sum_{j =1}^{k_2} 1_{B_j}(y) \beta_j$
$s^3(z) = \sum_{l =1}^{k_3} 1_{C_l}(z) \gamma_l$
Now compute
$$\mathbb{E}[s^1(X) s^2(Y) s^3(Z)] = \sum_{i,j,l} \alpha_i \beta_j \gamma_l \mathbb{E}[1_{A_i}(X) 1_{B_j}(Y) 1_{C_l}(Z) ]= \sum_{i,j,l} \alpha_i \beta_j \gamma_l \mathbb{P}[X \in A_i, Y \in B_j Z \in C_l] =\sum_{i,j,l} \alpha_i \beta_j \gamma_l\mathbb{P}[X \in A_i] \mathbb{P}[Y \in B_j] \mathbb{P}[Z \in C_l] = \mathbb{E}[s^1(X)]\mathbb{E}[ s^2(Y)]\mathbb{E}[ s^3(Z)]$$
Edit:
Note that by the same argument we have
$$ \mathbb{E}[ s^2(Y)]\mathbb{E}[ s^3(Z)] = \mathbb{E}[ s^2(Y) s^3(Z)]$$
Now take $\mathcal{F}_A= \{D \in \mathcal{B}^2: \Bbb{E}[1_A(X) 1_D(Y,Z)] = \Bbb{E}[1_A(X)]\Bbb{E}[1_D(Y,Z)]\}$
Note now that
1) $\emptyset \in \mathcal{F}_A$
2) $D\in \mathcal{F} \Rightarrow D^c \in \mathcal{F}_A$
$$\Bbb{E}[1_A(X) 1_{D^c}(Y,Z)] = \Bbb{E}[1_A(X) (1 - 1_D(Y,Z)] -\Bbb{E}[1_A(X)] = \Bbb{E}[1_A(X)]-\Bbb{E}[1_A(X) 1_D(Y,Z)] = \Bbb{E}[1_A(X)]-\Bbb{E}[1_A(X)]\Bbb{E}[1_D(Y,Z)] = \Bbb{E}[1_A(X)] (1-\Bbb{E}[1_D(Y,Z)]) = \Bbb{E}[1_A(X)] (\Bbb{E}[1 - 1_D(Y,Z)]) = \Bbb{E}[1_A(X)] (\Bbb{E}[ 1_{D^c}(Y,Z)])$$
3) $D_1,\ldots, D_n ,\ldots \in \mathcal{F}$ disjoints sets then $\cup_i D_i \in \mathcal{F}_A$
$$\Bbb{E}[1_A(X) 1_{\cup_iD_i}(Y,Z)] = \Bbb{E}[1_A(X) \sum_i 1_{D_i}(Y,Z)] = \sum_i \Bbb{E}[1_A(X) 1_{D_i}(Y,Z)] = \sum_i\Bbb{E}[1_A(X)] \Bbb{E}[1_{D_i}(Y,Z)] =\Bbb{E}[1_A(X)] \Bbb{E}[\sum_i 1_{D_i}(Y,Z)] = \Bbb{E}[1_A(X)] \Bbb{E}[ 1_{\cup_i D_i}(Y,Z)] $$
4) $B \times C \in \mathcal{F}_A$
as $B\times C \cap B'\times C' = B\cap B'\times C \cap C'$ we conclude that $\mathcal{F}_A$ is a $\lambda$-system that contains a $\pi$-system. Therefore it contains the $\sigma$- algebra generated by the sets $B\times C$ which is the $\mathcal{B}^2$ (Borel algebra of $\Bbb{R}^2$) (see https://en.wikipedia.org/wiki/Dynkin_system)
Now we now that for every $A \in \mathcal{B}$
$$ \Bbb{E}[1_A(X) 1_D(Y,Z)] = \Bbb{E}[1_A(X)]\Bbb{E}[1_D(Y,Z)]$$
To conclude, denote by $\hat{D} = \{(y,z)\in \Bbb{R}^2 \; \vert \;1_B(yz)=1\} $. Note that $\hat{D} \in \mathcal{B}^2$ therefore
$$ \Bbb{E}[1_A(X) 1_B(YZ)] = \Bbb{E}[1_A(X) 1_{\hat{D}}(Y,Z)]= \Bbb{E}[1_A(X)]\Bbb{E}[1_{\hat{D}}(Y,Z)] = \Bbb{E}[1_A(X)]\Bbb{E}[1_{B}(YZ)] $$
So we see that $X$ and $YZ$ are independent