Is there an elementary way of proving $$e^x=\lim_{n\to\infty}\left(1+\frac xn\right)^n,$$ given $$e=\lim_{n\to\infty}\left(1+\frac1n\right)^n,$$ without using L"Hopital's rule, Binomial Theorem, derivatives, or power series?
In other words, given the above restrictions, we want to show $$\left(\lim_{n\to\infty}\left(1+\frac1n\right)^n\right)^x=\lim_{n\to\infty}\left(1+\frac xn\right)^n.$$