$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\ln^{3}\pars{x \over x + 1} & =
\ln^{3}\pars{x} - 3\ln^{2}\pars{x}\ln\pars{x + 1} +
3\color{#66f}{\ln\pars{x}\ln^{2}\pars{x + 1}} - \ln^{3}\pars{x + 1}
\end{align}
such that
\begin{align}
\color{#66f}{\ln\pars{x}\ln^{2}\pars{x + 1}} & =
\ln^{2}\pars{x}\ln\pars{x + 1} + {1 \over 3}\,\ln^{3}\pars{x + 1} +
{1 \over 3}\bracks{\ln^{3}\pars{x \over x + 1} - \ln^{3}\pars{x}}
\end{align}
Then,
\begin{align}
&\int_{0}^{1}{\color{#66f}{\ln\pars{x}\ln^{2}\pars{1 + x}} \over x}\,\dd x =
\sum_{i = 1}^{3}\mc{I}_{i}
\\[5mm] &\mbox{where}\quad
\left\{\begin{array}{rcl}
\ds{\mc{I}_{1}} & \ds{\equiv} &
\ds{\phantom{1 \over 3}\int_{0}^{1}{\ln^{2}\pars{x}\ln\pars{1 + x} \over x}
\,\dd x}
\\[3mm]
\ds{\mc{I}_{2}} & \ds{\equiv} &
\ds{{1 \over 3}\int_{0}^{1}{\ln^{3}\pars{1 + x} \over x}\,\dd x}
\\[3mm]
\ds{\mc{I}_{3}} & \ds{\equiv} &
\ds{{1 \over 3}\int_{0}^{1}\bracks{\ln^{3}\pars{x \over x + 1} - \ln^{3}\pars{x}}{\dd x \over x}}
\end{array}\right.\label{1}\tag{1}
\end{align}
$\bbox[15px,#ffe,border:1px dotted navy]{\ds{\mc{I}_{1} =\ {\large ?}}}$.
\begin{align}
\mc{I}_{1} & \equiv
\int_{0}^{1}{\ln^{2}\pars{x}\ln\pars{1 + x} \over x}\,\dd x =
\int_{0}^{-1}{\ln^{2}\pars{-x}\ln\pars{1 - x} \over x}\,\dd x
\\[5mm] & =
-\int_{0}^{-1}\mrm{Li}_{2}'\pars{x}\ln^{2}\pars{-x}\,\dd x =
2\int_{0}^{-1}{\mrm{Li}_{2}\pars{x} \over x}\,\ln\pars{-x}\,\dd x
\\[5mm] & =
2\int_{0}^{-1}\mrm{Li}_{3}'\pars{x}\,\ln\pars{-x}\,\dd x =
-2\int_{0}^{-1}{\mrm{Li}_{3}\pars{x} \over x}\,\dd x =
-2\int_{0}^{-1}\mrm{Li}_{4}'\pars{x}\,\dd x
\\[5mm] & =
-2\,\mrm{Li}_{4}\pars{-1} =
\bbox[15px,#ffe,border:1px dotted navy]{\ds{7\pi^{4} \over 360}}
\label{I1}\tag{I1}
\end{align}
$\bbox[15px,#ffe,border:1px dotted navy]{\ds{\mc{I}_{2} =\ {\large ?}}}$.
\begin{align}
\mc{I}_{2} & \equiv
{1 \over 3}\int_{0}^{1}{\ln^{3}\pars{1 + x} \over x}\,\dd x =
{1 \over 3}\int_{1}^{2}{\ln^{3}\pars{x} \over x - 1}\,\dd x =
{1 \over 3}\int_{1}^{1/2}{\ln^{3}\pars{1/x} \over 1/x - 1}
\pars{-\,{1 \over x^{2}}}\,\dd x
\\[5mm] = &\
-\,{1 \over 3}\int_{1/2}^{1}{\ln^{3}\pars{x} \over x\pars{1 - x}}\,\dd x =
-\,{1 \over 3}\int_{1/2}^{1}{\ln^{3}\pars{x} \over x}\,\dd x -
{1 \over 3}\int_{1/2}^{1}{\ln^{3}\pars{x} \over 1 - x}\,\dd x
\\[5mm] & =
{1 \over 12}\,\ln^{4}\pars{2} -
{1 \over 3}\bracks{\ln^{4}\pars{2} +
3\int_{1/2}^{1}{\ln\pars{1 - x} \over x}\,\ln^{2}\pars{x}\,\dd x}
\\[5mm] & =
-\,{1 \over 4}\,\ln^{4}\pars{2} +
\int_{1/2}^{1}\mrm{Li}_{2}'\pars{x}\,\ln^{2}\pars{x}\,\dd x
\\[5mm] & =
-\,{1 \over 4}\,\ln^{4}\pars{2} - \,\mrm{Li}_{2}\pars{1 \over 2}\ln^{2}\pars{2}
-2\int_{1/2}^{1}{\mrm{Li}_{2}\pars{x} \over x}\,\ln\pars{x}\,\dd x
\\[5mm] & =
-\,{1 \over 4}\,\ln^{4}\pars{2} - \,\mrm{Li}_{2}\pars{1 \over 2}\ln^{2}\pars{2}
-2\int_{1/2}^{1}\mrm{Li}_{3}'\pars{x}\,\ln\pars{x}\,\dd x
\\[5mm] & =
-\,{1 \over 4}\,\ln^{4}\pars{2} - \,\mrm{Li}_{2}\pars{1 \over 2}\ln^{2}\pars{2} -
2\,\mrm{Li}_{3}\pars{1 \over 2}\ln\pars{2} +
2\int_{1/2}^{1}{\mrm{Li}_{3}\pars{x} \over x}\,\dd x
\\[5mm] & =
-\,{1 \over 4}\,\ln^{4}\pars{2} - \,\mrm{Li}_{2}\pars{1 \over 2}\ln^{2}\pars{2} -
2\,\mrm{Li}_{3}\pars{1 \over 2}\ln\pars{2} +
2\int_{1/2}^{1}\mrm{Li}_{4}'\pars{x}\,\dd x
\\[5mm] & =
-\,{1 \over 4}\,\ln^{4}\pars{2} - \,\mrm{Li}_{2}\pars{1 \over 2}\ln^{2}\pars{2} -
2\,\mrm{Li}_{3}\pars{1 \over 2}\ln\pars{2} +
2\mrm{Li}_{4}\pars{1} - 2\mrm{Li}_{4}\pars{1 \over 2}
\end{align}
By using the
well know values of $\ds{\,\mrm{Li}_{2}\pars{1/2}}$ and
$\ds{\,\mrm{Li}_{3}\pars{1/2}}$ and
$\ds{\,\mrm{Li}_{4}\pars{1} = \zeta\pars{4} = \pi^{4}/90}$:
\begin{equation}
\mc{I}_{2} =
\bbox[15px,#ffe,border:1px dotted navy]{\ds{{\pi^{4} \over 45} + {\pi^{2}\ln^{2}\pars{2} \over 12} -
{\ln^{4}\pars{2} \over 12} - {7\ln\pars{2} \over 4}\,\zeta\pars{3} -
2\,\mrm{Li}_{4}\pars{1 \over 2}}}\label{I2}\tag{I2}
\end{equation}
$\bbox[15px,#ffe,border:1px dotted navy]{\ds{\mc{I}_{3} =\ {\large ?}}}$.
\begin{align}
\mc{I}_{3} & \equiv
{1 \over 3}\int_{0}^{1}\bracks{\ln^{3}\pars{x \over x + 1} - \ln^{3}\pars{x}}{\dd x \over x} =
{1 \over 3}\,\lim_{\epsilon \to 0^{+}}\bracks{%
\int_{\epsilon}^{1}\ln^{3}\pars{x \over x + 1}\,{\dd x \over x} -
\int_{\epsilon}^{1}{\ln^{3}\pars{x} \over x}\,\dd x}
\end{align}
In the RHS first integral I'll make the change of variables
$\ds{x/\pars{1 + x} \mapsto x}$ such that
\begin{align}
\mc{I}_{3} & =
{1 \over 3}\,\lim_{\epsilon \to 0^{+}}\bracks{%
\int_{\epsilon/\pars{1 + \epsilon}}^{1/2}{\ln^{3}\pars{x} \over x - x^{2}}
\,\dd x -
\int_{\epsilon}^{1}{\ln^{3}\pars{x} \over x}\,\dd x}
\\[5mm] & =
{1 \over 3}\,\ \underbrace{\lim_{\epsilon \to 0^{+}}
\int_{\epsilon/\pars{1 + \epsilon}}^{\epsilon}
{\ln^{3}\pars{x} \over x - x^{2}}\,\dd x}_{\ds{=\ 0}}\ +\
{1 \over 3}\int_{0}^{1/2}\bracks{%
{\ln^{3}\pars{x} \over x - x^{2}} - {\ln^{3}\pars{x} \over x}}\dd x -
{1 \over 3}\int_{1/2}^{1}{\ln^{3}\pars{x} \over x}\,\dd x
\\[5mm] & =
{1 \over 3}\int_{0}^{1/2}{\ln^{3}\pars{x} \over 1 - x}\,\dd x\ -\
\underbrace{{1 \over 3}\int_{1/2}^{1}{\ln^{3}\pars{x} \over x}\,\dd x}
_{\ds{-\,{1 \over 12}\,\ln^{4}\pars{2}}}
\end{align}
The remaining integral can be evaluated by successive integration by parts: A procedure I already exploited in the $\ds{\,\mc{I}_{2}}$-evaluation $\pars{~\mbox{see}\ \eqref{I2}~}$. Indeed, they are rather similar.
Therefore,
\begin{equation}
\mc{I}_{3} =
\bbox[15px,#ffe,border:1px dotted navy]{\ds{%
{\pi^{2}\ln^{2}\pars{2} \over 12} -
{\ln^{4}\pars{2} \over 12} - {7\ln\pars{2} \over 4}\,\zeta\pars{3} -
2\,\mrm{Li}_{4}\pars{1 \over 2}}}\label{I3}\tag{I3}
\end{equation}
By replacing $\ds{\,\mc{I}_{1},\,\mc{I}_{2}\ \mbox{and}\ \,\mc{I}_{3}}$
$\pars{~\mbox{see expressions}\ \eqref{I1},\eqref{I2}\ \mbox{and}\ \eqref{I3}~}$ in \eqref{1}:
$$
\int_{0}^{1}{\ln\pars{x}\ln^{2}\pars{1 + x} \over x}\,\dd x =
\bbox[15px,#ffe,border:1px dotted navy]{\ds{{\pi^{4} \over 24} + {\pi^{2}\ln^{2}\pars{2} \over 6} -
{\ln^{4}\pars{2} \over 6} - {7\ln\pars{2} \over 2}\,\zeta\pars{3} -
4\,\mrm{Li}_{4}\pars{1 \over 2}}}
$$