Deteremine the sum of the series $$\frac{1}{1!}+\frac{1+2}{2!}+\frac{1+2+3}{3!}+ \ldots$$
So I first write down the $n^{th}$ term $a_n=\frac{\frac{n(n+1)}{2}}{n!}=\frac{n+1}{2(n-1)!}$.
So from there I can write the series as $$1+\frac{3}{2}+\frac{4}{2\times 2!}+\ldots +\frac{n+1}{2(n-1)!}+\ldots $$
I am quite sure I can do some sort of term by term integration or differentiation of some standard power series and crack this. Any leads?
$$\frac{2}{2\times 0!} + \frac{3}{2\times 1!} + \frac{4}{2\times 2!}+\frac{5}{2\times 3!}+\ldots +\frac{n+1}{2(n-1)!}+\ldots $$
– wythagoras Jun 22 '15 at 08:31