The sum of the series $1+\frac{1+2}{1!}+\frac{1+2+3}{3!}+....$ equals?
The answer is $\frac{3e}{2}$.
But I dont Know How?
I have tried following:
$1+\frac{1+2}{1!}+\frac{1+2+3}{3!}+....$=$\sum\limits_{n=1}^{\infty} \frac{n(n+1)}{2n!} $
I know that sequence of partial sum $S_n$=$1+\frac{1+2}{1!}+\frac{1+2+3}{3!}+....+\frac{n(n+1)}{2n!}$ and $\sum\limits_{n=1}^{\infty} \frac{n(n+1)} {2n!}$ converges to same point.
Now how to find $S_n$ converges to which point?