Let $u=Re^{i\theta}$, so that $du=iRe^{i\theta}\,d\theta$. Thus
$$\lim_{R\to \infty}\int_0^{\pi}\sin(R^2e^{i2\theta})iRe^{i\theta}\,d\theta=-\int_{-\infty}^{\infty}\sin(u^2)\,du=-\sqrt{\frac{\pi}{2}}$$
where we used the well-know results of the Fresnel Integral.
NOTE:
To evaluate the Fresnel integral, let's analyze the following complex integral.
$$\begin{align}
\oint e^{iz^2}\,dz&=\int_0^Re^{ix^2}\,dx+\int_0^{\pi/4}e^{iR^2e^{i2\phi}}iRe^{i\phi}\,d\phi+\int_R^0e^{i(1+i)^2t^2}(1+i)\,dt\\\\
&=\int_0^Re^{ix^2}\,dx+\int_0^{\pi/4}e^{iR^2e^{i2\phi}}iRe^{i\phi}\,d\phi+(1+i)\int_R^0e^{-2t^2}\,dt
\end{align}$$
Now, as $R\to \infty$, the first integral becomes
$$\lim_{R\to \infty}\int_0^Re^{ix^2}\,dx=\int_0^{\infty}\cos (x^2)\, dx+i\int_0^{\infty}\sin (x^2)\, dx$$
the second integral goes to zero since
$$\begin{align}
\left|\int_0^{\pi/4}e^{iR^2e^{i2\phi}}iRe^{i\phi}d\phi\right|&\le R\int_0^{\pi/4}e^{-R^2\sin 2\phi}\,d\phi\\\\
&\le R\int_0^{\pi/4}e^{-4R^2\phi/\pi}\,d\phi\\\\
&=\frac{\pi}{4}\frac{1-e^{-R^2}}{R}\to 0
\end{align}$$
and the third integral becomes the Gaussian Integral
$$(1+i)\int_{\infty}^0e^{-2t^2}\,dt=-(1+i)\sqrt{\frac{\pi}{8}}$$
Since the contour integral is zero, we have
$$\bbox[5px,border:2px solid #C0A000]{\int_0^{\infty}\cos (x^2)\, dx=\int_0^{\infty}\sin (x^2)\, dx=\sqrt{\frac{\pi}{8}}}$$