As we saw here, the minimum of two quantities can be written using elementary functions and the absolute value function.
$\min(a,b)=\frac{a+b}{2} - \frac{|a-b|}{2}$
There's even a nice intuitive explanation to go along with this: If we go to the point half way between two numbers, then going down by half their difference will take us to the smaller one. So my question is: "Is there a similar formula for three numbers?"
Obviously $\min(a,\min(b,c))$ will work, but this gives us the expression: $$\frac{a+\left(\frac{b+c}{2} - \frac{|b-c|}{2}\right)}{2} - \frac{\left|a-\left(\frac{b+c}{2} - \frac{|b-c|}{2}\right)\right|}{2},$$ which isn't intuitively the minimum of three numbers, and isn't even symmetrical in the variables, even though its output is. Is there some nicer way of expressing this function?