Q1: Are there some linear forms $a_ix+b_iy+c_iz$ and signs $\sigma_i\in\{1,-1\}$ such that
$$\max(x,y,z)=(a_0x+b_0y+c_0z)+\sum_{i\geq1}\sigma_i|a_ix+b_iy+c_iz|$$
for all $x,y,z\in\mathbb R$ ?
Q2: Same question for $\max(|x|,|y|,|z|)$.
For the analogous questions with only two variables, the answers are
$$\max(x,y)=\frac{x+y}{2}+\left|\frac{x-y}{2}\right|$$
and
$$\max(|x|,|y|)=\left|\frac{x+y}{2}\right|+\left|\frac{x-y}{2}\right|$$
Show that the $\max{ \{ x,y \} }= \frac{x+y+|x-y|}{2}$.
And the two-variable case can be applied to the three-variable case:
$$\max(x,y,z)=\max(\max(x,y),z)$$ $$=\frac{\frac{x+y+|x-y|}{2}+z+\left|\frac{x+y+|x-y|}{2}-z\right|}{2}$$ $$=\frac{x+y+2z}{4}+\left|\frac{x-y}{4}\right|+\left|\frac{x+y-2z}{4}+\left|\frac{x-y}{4}\right|\right|$$
But this has nested absolute values, which I don't want.
I did find an approximate formula, which is exact when one of the variables is $0$ or when all are equal:
$$\max(|x|,|y|,|z|)\approx$$ $$-\tfrac13\Big(|x|+|y|+|z|\Big)\\+\tfrac16\Big(|x+y|+|x-y|+|x+z|+|x-z|+|y+z|+|y-z|\Big)\\+\tfrac16\Big(|x+y+z|+|x+y-z|+|x-y+z|+|x-y-z|\Big)$$