If $a$ and $b$ are elements in an integral domain with unity 1$\neq$0. Show that $a$ and $b$ have a least common multiple if $a$ and $b$ have a highest common factor.
More generally there is a problem of showing that if any finite non-empty non-zero subset of the ring has a highest common factor, then any finite non-empty non-zero subset of the ring has a least common multiple. (Actually the converse of the preceding sentence is also true.)