Let $(X,m)$ be a measure space, $(f_n)_n, (g_n)_n, h \in L^2(m)$. I would like to prove that if $0 \leq f_n \leq g_n$, $g_n \rightarrow h$ in $L^2$ and $\int f_n^2 \rightarrow \int h^2$ then $f_n \rightarrow h$ in $L^2$.
My try:
$$ \int (f_n - h)^2 = \int f_n^2 - 2f_nh + h^2, $$ and since $\int f_n^2 \rightarrow \int h^2 $ I am done if I can prove $$ \int f_n h \rightarrow \int h^2. $$ I would be tempted to write $$ \left|\int (f_n - h) h \right| \leq \left| \int (g_n - h)h \right| \rightarrow 0, $$ but I only know that $f_n \leq g_n$.