Let $(X,m)$ be a measure space, $(f_n)_n,f \in L^1(m)$ all non-negative and $f_n \rightarrow f$ in $L^1$. Is it true that then $\sqrt{f_n} \rightarrow \sqrt f$ in $L^2$?
My try: $$ \int (\sqrt{f_n} - \sqrt f)^2 = \int f_n + f - 2 \sqrt{f f_n} = \left(\int f_n - f \right) + 2\int f - \sqrt{ff_n}, $$ so I need just to prove that $\int f - \sqrt{ff_n} \rightarrow 0$. But why does this holds?