Spin-off from here.
The solution given is that
$$E[X_{n+1}|X_n] = 1/2\times 2X_n + 1/2\times 0 = X_n$$
How about using indicator functions?
I was thinking that $X_n = 2^n 1_{A_1}$, but I guess that's wrong.
What I tried:
Let $A_n = \{ \omega \in \Omega | X_{n+1}(\omega) = 2 X_n(\omega) \} \in \mathscr{F}$. Note that $P(A_n) = 1/2$.
$X_n$ is a product of indicator functions namely: $X_n = 2^n \prod_{0 \leq i \leq n-1} 1_{A_i}$
since
$X_0 = 1$
$X_1 = 2 X_0 \times 1_{A_0} + 0 \times 1_{A_0^c} = 2^1 \times 1_{A_0}$
$X_2 = 2 X_1 \times 1_{A_1} + 0 \times 1_{A_1^c} = 2^2 \times 1_{A_0} \times 1_{A_1}$
and so on.
Now $E[X_{n+1} | \mathscr{F_n}] = E[2^{n+1} \prod_{0 \leq i \leq n} 1_{A_i} | \mathscr{F_n}]$
$= 2^{n+1} \prod_{0 \leq i \leq n-1} 1_{A_i} E[1_{A_{n}} | \mathscr{F_n}]$
$= 2^{n+1} \prod_{0 \leq i \leq n-1} 1_{A_i} P[{A_{n+1}} | \mathscr{F_n}]$
$= 2^n \prod_{0 \leq i \leq n-1} 1_{A_i} = X_n$.
Is that correct?
I seemed to assume $\sigma(1_{A_{n}}) = \sigma(A_n)$ and $\mathscr{F_n}$ are independent. Are they?
What is $\sigma(X_n)$ in terms of $A_n$ anyway? I guess that:
$\sigma(X_0) = \{ \emptyset, \Omega \}$
$\sigma(X_1) = \sigma(A_0) \because X_1 = 2 \times 1_{A_0}$
$\sigma(X_2)$...$\subseteq \sigma(\sigma(A_0) \cup \sigma(A_1)) = \sigma(A_0, A_1)$