Hint $\:$ By Theorem below $\rm\:(x^a\!-1,x^b\!-1) = x^{(a,b)}\!-1$ $[ \rm\: =\: x^a\!-1\!\iff\! (a,b)=a\!\iff\! a\mid b\,]$
when applied to $\rm\ f_n =\ x^n\!-1\ =\ x^{n-m} \: (x^m\!-1) + x^{n-m}\!-1 =\: g\ f_m + f_{n-m}\equiv f_{n-m}\pmod{f_m}$
Theorem $\: $ If $\rm\:f_n\:$ is a sequence in a GCD domain (domain where gcds exist) satisfying $\rm\ f_{\:\!0} =\: 0\: $ and $\rm\ \: f_n\equiv f_{n-m}\ (mod\ f_m)\ $ for $\rm\: n > m\ $ then $\rm\ (f_n,f_m) =\, f_{(n,\:m)}\: $ where $\rm\ (i,\,j) := gcd(i,\:j)$.
Proof $\ $ By induction on $\rm\:n + m.\,$ The theorem is trivially true if $\rm\ n = m\ $ or $\rm\ n = 0\ $ or $\rm\: m = 0.\,$
So we may assume $\rm\:n > m > 0.\,$ Note $\rm\ (f_n,f_m)\: =\ (f_{n-m},f_m)\ $ follows from the hypothesis.
Since $\rm\:\ (n-m)+m \ <\ n+m,\,$ induction yields $\rm \ (f_{n-m},f_m) = f_{(n-m,\:m)} =\ f_{(n,\:m)}\ $
See this post and its links for more on such divisibility sequences.