$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\int_{0}^{\infty}{\sin^{4}\pars{x} \over x^{2}}\,\dd x & =
{1 \over 2}\int_{-\infty}^{\infty}{\sin^{4}\pars{x} \over x^{2}}\,\dd x =
{1 \over 2}\lim_{N \to \infty}\int_{-N\pi}^{N\pi}{\sin^{4}\pars{x} \over x^{2}}\,\dd x
\\[5mm] & =
{1 \over 2}\lim_{N \to \infty}\sum_{k = -N}^{N - 1}\int_{k\pi}^{k\pi + \pi}{\sin^{4}\pars{x} \over x^{2}}\,\dd x =
{1 \over 2}\lim_{N \to \infty}\sum_{k = -N}^{N - 1}\int_{0}^{\pi}{\sin^{4}\pars{x} \over \pars{x + k\pi}^{2}}\,\dd x
\\[5mm] & =
{1 \over 2}\int_{0}^{\pi}\sin^{4}\pars{x}\csc^{2}\pars{x}\,\dd x =
{1 \over 2}\int_{0}^{\pi}{1 - \cos\pars{2x} \over 2}\,\dd x = \bbx{\pi \over 4}
\end{align}